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The Federal Aviation Administration Office of the Chief Scientific and Technical 
Advisor for Human Factors (ATO-P R&D HF) vertical flight human factors program is a 
relative new research domain. Research in this area is meant to identify specific human 
factors associated with helicopter flight regimes within the National Airspace System. 
Such issues include certification and regulation of civilian flights with night-vision-
goggles devices, simultaneous non-interfering operations, and implications of tilt-rotor 
controls.  
 
The following report summarizes projects between October 1st, 2004 and September 30th, 
2005.  These projects attempt to address requirements identified by the Federal Aviation 
Administration Flight Standards and Certification offices.  The intent of this report is to 
allow Federal Aviation Administration sponsors to determine whether their requirements 
have been satisfactorily addressed, allow investigators to receive feedback from Federal 
Aviation Administration sponsors and other interested parties, and to provide feedback to 
the ATO-P R&D HF vertical flight human factors program manager on the quality of the 
research program.  Basically, this document is a means of holding each group (sponsor, 
investigator, ATO-P R&D HF program manager) accountable to ensure that the program 
is successful. 
 
The FY05 funded projects had $250,000 contract dollars distributed to three projects. 
 
Additional information about the Vertical Flight Human Factors research program can be 
found at http://www.hf.faa.gov/vertical.htm
 
 
William K. Krebs, Ph.D. 
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Project Justification: 
Vertical Flight Requirements Mapped to Projects 

 
The table below lists each project with the corresponding research requirement.  Please click on the research requirement link to 
understand the FAA sponsor research need for the project 
 

Project Title Requirement Statement Sponsor Research 
Requirement link 

Investigation ATC 
Procedures for 
Simultaneous Non-
Interfering Flight 
Within the National 
Airspace System 
 

To determine NAV performance of VFR helo pilots using IFR qualified GPS 
receivers. AFS needs to quantify helo pilot NAV performance for IFR and 
VFR pilotage which will allow the development of procedures to integrate 
within the national airspace system. 
 

AFS-800 link

UAV See and Avoid 
Systems: Modeling 
Human Visual 
Detection and 
Identification 

This research will compile and review the characteristics and performance of 
existing optical systems that could be used to enhance the human UAV 
operator’s ability to see-and-avoid potential conflicts with other manned and 
unmanned aircraft. Data will be collected for those sensor systems that are 
currently being used in Commercial UAV operations (e.g., surveillance, 
search-and-rescue, law enforcement, etc.) to determine their ability to be 
used to detect and avoid conflicting aircraft. The types of systems (cameras) 
will be characterized by their performance characteristics: field-of-view, 
field-of-regard, modulation transfer function, focal point, and lens quality. 
This comparison will be used to determine the ability of these systems to 
detect static images of differing sizes, at a range of distances in, variety of 
visibility conditions, i.e., sense-and-avoid. Existing optical models will be 
used to analyze the performance of these systems for detecting when the 
optics are integrated with a processor and data link system to determine the 
effects of bandwidth, image compression, and latency on see-and-avoid 
performance for large and small conflicting aircraft operating at a range of 
speeds with both vertical and horizontal path variations leading to the 
conflict. Finally, the utilization of these systems will be evaluated 

AFS-800 link

http://www.hf.faa.gov/docs/508/docs/vf/FY02/SNIvfReq.pdf
http://www.hf.faa.gov/docs/508/docs/GA_SeeAvoid_Req.pdf


considering the performance of the human operator’s eyes in the role of see-
and-avoid (human-in-the-loop).  
 
 

Video Processing 
Methods for In-Flight 
Gaze Analysis 

To determine NAV performance of VFR helo pilots using IFR qualified GPS 
receivers. AFS needs to quantify helo pilot NAV performance for IFR and 
VFR pilotage which will allow the development of procedures to integrate 
within the national airspace system. 
 

AFS-800 link

 

http://www.hf.faa.gov/docs/508/docs/vf/FY02/SNIvfReq.pdf


Vertical Flight Human Factors 
 

FY05 Funded Projects 
 
 

 
Project Title Page # 
 
Investigating ATC Procedures for Simultaneous Non-Interfering    6 
Flight Within the National Airspace System 
  Sullivan, J.  & Darken, R. 
  Naval Postgraduate School 
 
UAV See and Avoid Systems:       11 
Modeling Human Visual Detection and Identification 

Watson, A. B. 
NASA Ames Research Center 

 
Video Processing Methods for In-Flight Gaze Analysis    18 
 Mulligan, J. B. 
  NASA Ames Research Center 



INVESTIGATING ATC PROCEDURES FOR SIMULTANEOUS NON-
INTERFERING FLIGHT WITHIN THE NATIONAL AIRSPACE SYSTEM 

 
Principal Investigators:  

CDR J. Sullivan USN & Dr. R. Darken,  
700 Dyer Rd. Code MOVES 
Naval Postgraduate School 

Monterey, California 93943-5001 
831-656-7582 

831-656-7599 (fax) 
 

September 30, 2005 
 
Purpose and Rationale 
The overarching objective of this program is to assist in the recommendation of the 
minimum Required Navigation Performance (RNP) value for a VFR helicopter equipped 
with an IFR GPS. The results of this study combined with the output from another AAR-
100’s Vertical Flight project entitled “Helicopter SNI helicopter Flight Data” will assist 
the Federal Aviation Administration flight standards office in determining the minimum 
RNP value that will be accepted by air traffic office in developing procedures for VFR 
SNI routes. By correlating human performance data in the simulator to already collected 
flight data, we will be able to further experiment with new flight patterns towards a 
decreased minimum RNP value. The purpose of our project is to build and validate the 
simulation system for further experimentation. 
 
Methodology 
A critical element of our study involves a model of pilot performance as a factor of 
pilotage cues (e.g. landmarks) and radio communications (e.g. GPS receivers). We need 
to know if a pilot fixates on landmarks versus GPS output. Do they simply “fly the 
needle” off of the GPS unit, do they carefully observe visual cues, or is it some mix of 
both? How does this affect the envelope we can assume they are maintaining, therefore 
indicating how traffic can be controlled around them? We assume that too much attention 
to the GPS receiver may adversely affect pilotage performance, but that the reverse may 
also be sub-optimal. The study conducted in this program investigates in a virtual 
environment simulation how traffic density, workload, and weather affects the minimum 
RNP for a qualified VFR helo pilot equipped with an IFR GPS. 
 
Recent Accomplishments 
The primary accomplishments for this period involve attempts to integrate a KLN-89B 
GPS emulation system in the simulation and writing analysis tools.    
 
KLN-89 emulation system integration 
 
Work continues on integrating a GPS emulation system into the simulation.  The system 
(KLN-89 receiver emulation board and KLN-89 panel mounted GPS) was delivered in 
late July.  Progress included modifying the sample software delivered with the system to 



work in standalone mode.  The sample software delivered with the system was tightly 
coupled and dependent on a larger simulation package.  As this package was not included 
in the delivery, NPS engineers modified the software to run independently.  Additional 
progress included building the required interconnection wiring.  After extensive 
troubleshooting of the hardware and software systems, Frasca technicians determined 
there was a hardware fault that could only be fixed at Frasca.  The system was shipped in 
early September.  Technicians have thus far been unable to repair the system. 
 
Preliminary simulator data analysis 
 
Preliminary investigation of the simulator data was conducted.  The results for a sample 
subject on the first 5 legs of the flight are shown in Figure 1.  The horizontal axis 
represents elapsed time along each leg in seconds; the vertical axis represents magnitude 
of deviation in meters.  Most of the deviation from prescribed route is associated with 
turns at the waypoints.  This can be attributed in part to the GPS emulation system used 
in the simulation.  The GPS used in the aircraft used fly-by waypoints and featured a turn 
anticipation function.  The GPS emulation used in the simulation was based on fly-over 
waypoint navigation and did not include a turn anticipation feature. Further data analysis 
and comparison with in flight data will be completed after the GPS emulation system is 
integrated into the simulator. 
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Figure 1. Simulator subject three route deviation for legs 1-5 

Flight path and pilot’s view visualization tool 
 
To assist with data analysis a post flight/simulation tool was developed.  The tool was 
designed to allow evaluators to visualize navigation performance and the pilot’s out the 
window view.   A screen capture from this program is shown in Figure 2.  The program 
inputs a subject’s recorded flight path data from either the aircraft or simulator events 
data files.  The tool replays the flight depicting the pilot’s out the window (OTW) view in 
the upper portion of the monitor and its progress along track in the lower portion.  
Aircraft progress along its flight path is controlled via keyboard entry.  The lower 
window is manipulated with the mouse using a trackball (world in hand) metaphor.  
Waypoints and the aircraft’s current position are depicted as opaque red spheres.  



Waypoints are labeled; the sphere associated with the aircraft position is not labeled. 
Table 1 summarizes the functionality and symbology of this tool. 
  

Upper third of screen 
 

Three panels corresponding to left, 
center and right cockpit out the 
window views. 
Keyboard entry allows user to 
pause/resume flight. 

Lower third of screen Exocentric view of the aircraft’s 
flight path and current position and 
orientation relative to waypoints. 

Symbology Opaque white band represents the 
aircraft’s track.   
Opaque red sphere with text label 
represents the waypoint. 
Opaque red sphere without label 
represents the current aircraft 
position. 

Table 1. Summary of flight visualization tool functionality 



 

 
Figure 2. Flight Path, Pilot's View Visualization Tool 

The visualization tool may be useful for providing insight into pilot performance.  For 
example in Figure 2 subject three flew well past waypoint five.  The visual cues 
associated with the next segment of flight (a set of power lines) as depicted in the OTW 
view are not very prominent.  This compares to Figure 3 where subject three approaches 
waypoint eight.  Here the feature associated with the next leg of the flight is clearly 
visible well in advance.   



 
Figure 3.  Flight Path & Pilot's View - Subject three approaching waypoint 08 

Potential additional features to add to this visualization tool would be a simulation of the 
the GPS panel.  This would provide a depiction of the navigation data available to the 
pilot throughout the flight.  These displays could then be integrated with pilot scan data. 
The pilot’s view through the flight could then be superimposed on the pilots combined 
out the window and cockpit views. 
 



UAV See and Avoid Systems: 
Modeling Human Visual Detection and Identification 

Andrew B. Watson 
NASA Ames Research Center, Moffett Field, California 

The FAA seeks to characterize the ability of UAV viewing systems to support target detection and 
identification. Existing system evaluation methods require expensive and time consuming subjective ex-
periments. We hope to replace those experiments with the Spatial Standard Observer, a simple model of 
human detection and discrimination. This report describes progress on two elements of this project: simu-
lation of an existing subjective data set using the Spatial Standard Observer (SSO), and development of a 
web-based application for demonstrating SSO-based visibility calculations. Preliminary results indicate 
the utility of both elements. 

Introduction 
The FAA seeks to compile and review the 

characteristics and performance of existing opti-
cal/digital viewing systems that could be used to 
enhance the human UAV operator’s ability to 
see-and-avoid potential conflicts with other 
manned and unmanned aircraft. The systems will 
be characterized by their performance character-
istics:  field-of-view, field-of-regard, modulation 
transfer function, focal point, and lens quality, as 
well as bandwith and compression. This com-
parison will be used to determine the ability of 
these systems to allow detection of static images 
of differing sizes, at a range of distances in, vari-
ety of visibility conditions, i.e., sense-and-avoid. 

In this context there is a need to supplement 
the Army’s target acquisition model with a hu-
man vision model to predict observers’ probabil-
ity of detection and recognition of aircraft and 
other targets. In the current Army target acquisi-
tion model, these tasks are associated with par-
ticular values of N50 for particular image sets 
and classes, which are obtained by expensive and 
time consuming subjective experiment. We pro-
pose to create and evaluate a tool for computing 
N50 from a given image set and given classifica-
tions, thus obviating the need for subjective 
measurements. The predicted N50s would be en-
tered in the Army’s target acquisition perform-
ance model, Night Vision Thermal Imaging Sys-
tem Performance Model (NVTherm), to deter-
mine the effects of camera field-of-view, camera 
field-of-regard, camera modulation transfer func-
tion, opposing aircraft size, contrast, distance, 

and atmospheric conditions on observers’ detec-
tion and recognition of an aircraft[1]. 

We have developed a model called the Spatial 
Standard Observer (SSO) that allows predictions 
of visual detection and discrimination of foveal 
spatial targets (Watson & Ahumada, 2004). The 
goal of this project was to assess the feasibility of 
using the SSO to compute N50 values for target 
image sets.  

The first effort in this project has been to 
simulate the results of a recent psychophysical 
experiment that estimated N50 for a set of mili-
tary vehicles[2]. A second concurrent effort has 
been the development of a prototype tool for cal-
culation of the visibility of manned or unmanned 
aircraft under specified viewing conditions. 

Target Identification Model 
Here we describe the development and 

evaluation of a model to predict image and object 
identification. We begin with a description of the 
experiment whose data will be modeled. 

Psychophysical Experiment 
The experiment has been more extensively 

described in another report[2]. Here we provide a 
brief summary. The experiment consisted of two 
parts, using visible and infrared imagery respec-
tively. 

In each part of the experiment, the source im-
ages consisted of 144 digital images, of 12 “ob-
jects” in 12 “aspects.” An illustration of two of 
the objects and three of the aspects are shown for 
the visible and infrared imagery in Figure 1. Each 
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object  is a particular military vehicle, and each 
aspect is a view of that vehicle. The twelve as-
pects are approximately the same from vehicle to 
vehicle. Of the twelve aspects, eight are views 
from an elevation of seven degrees, while the 
remaining four are from 0 degrees.  

These source images were blurred with Gaus-
sian kernels of 6 possible scales, 

   

G x( )= Exp
−π x

2

scale2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 (1) 

The scales ranged from 5 to 30 pixels in steps 
of 5. This yields a total of 6 x 144 = 864 images 
for each image set (visible or infrared). The six 

levels of blur are illustrated in Figure 2. 

Identification experiments using trained hu-
man observers were run separately on each level 
of blur. Each observer viewed a subset of 144 
images of one type (visible or infrared), consist-
ing of 2 aspects for all 12 objects in all 6 blurs. 
The two aspects were chosen in a quasi-random 
fashion. The observers were previously trained 
on identification of these vehicles, using different 
images. On each trial, the observer attempted to 
identify the object. The percent correct was re-
corded. The results are shown in Figure 3. 

Figure 1. E
visible and

Watson 
 

 
xample images. Two objects (rows) and four aspects (columns) are shown for both the 

 infrared image sets. The last aspect shows an example of the 0 degree elevation. 
Figure 2. Examples of the six levels of blur applied to one image of each type (visible and infrared). 
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Figure 3. Percent correct identification as a 
function of blur scale for visible and infrared 
targets. 

Model 
The first model we have considered is a sim-

ple image classification machine operating on the 
basis of a normalized correlation matching rule.  
This model computes a set of N discriminant 
functions, where N is the number of possible im-
ages (in this case, N = 144). One discriminant 
corresponds to each candidate image, and the 
model selects the image with the largest dis-
criminant. 

The matching is assumed to occur in a “neural 
image” space, which is reached by transforming 
the image. The transformation consists of a con-
version to contrast and filtering by a contrast sen-
sitivity filter (CSF). The CSF is derived from our 
Spatial Standard Observer (SSO), a simple model 
of foveal contrast detection[3]. 

The templates consist of the transformed im-
ages. If the presented transformed image is writ-
ten s (for sample), then the discriminant for im-
age i is given by  

  
di s( )= sgti  (2) 

where ti is the normalized template. It is not nec-
essary to divide by the norm of s, since it is the 
same for all discriminants. 

Each transformed image can be expressed as a 
product of its normalized form and its energy 

 gk = ektk  (3) 

Thus if image k is presented, 

 s = ektk + n  (4) 

where n is a neural noise image (noise in the neu-
ral image space). Then 

di s( )= ektk + n( )gti
= ektk gti + ngti

 (5) 

We can divide through by ek without changing 
the ranking of the discriminants, 

di s( )= tk gti +
ngti
ek

= ρi,k +
ngti
ek

 (6) 

where ρi,k is the correlation (dot product) between 
each pair of neural images. 

If the noise is white and normally distributed 
with standard deviation σ, then the second term 
in this expression will be a normally distributed 
random variable with standard deviation σ/ek. So 
finally, each discriminant will be be a normal 
random variable distributed as  

di s( )= Normal ρi,k , σ
ek

⎛

⎝
⎜

⎞

⎠
⎟  (7) 

To simulate performance of this model, we 
simply pick a noise σ, and generate N discrimi-
nant values for a number of trials T for each of N 
sample images. On each trial, the image selected 
is the largest discriminant, and from these results 
we can compute percent correct  (we can also 
generate confusion matrices). We compute both 
percent correct image identification and correct 
object identification. The performance of the 
model is controlled by a single parameter: σ, the 
standard deviation of the “neural noise” added to 
the sample neural image. In Figure 4, we plot the 
percent correct for image identification and ob-
ject identification for images blurred by 30 pix-
els. 

As expected, increasing noise reduces per-
formance. The red and green lines in the figure 
show the asymptotic guessing performance ex-
pected given the numbers of images and objects, 
and the larger values of noise reach these asymp-
totes. 

Another question of interest is whether the 
image and object identification performance can 
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be related by a simple guessing model: is the ob-
ject identification performance what would be 
expected by assuing that if the model does not 
pick the correct image, that it then guesses 
among th other images.  In that case the percent 
correct object identification (PO) can be com-
puted from the percent correct image identifica-
tion (PI) as 

  
PO = PI + 1− PI( ) N − 1

N 2 − 1
. (8) 

This prediction is shown by the gray curve in 
Figure 4. Clearly, in this example, the object 
identification is better than would be expected 
from this prediction. We call this the "object ad-
vantage" (OA).�The OA is negligible at 5 pixels 
blur, but increases to a max of about 0.13 at 30 
pixels.�Without an aperture (see below), it is 
about the same for VIS and IR.�With an aper-
ture, it is smaller for IR than for VIS.�Possible 
sources for the OA are: background (without ap-
erture), object color (for visible), and overall ob-
ject size. We will return to this point later. 

 
Figure 4. Percent correct image (lower black 
curve) and object (upper black curve) identifi-
cation for various levels of the noise standard 
deviation. These results are for visible targets 
at blur scale = 30 pixels. Green and red lines 
indicate predicted guessing performance. The 
gray curve is object identification predicted 
from image identification using a guessing 
model (see text). 

Object Identification vs Blur Scale 
The results for image identification can also 

be plotted as a function of blur scale, as shown in 
Figure 5. The value plotted is percent correct ob-
ject identification (as in the upper curve in Figure 
4), and each curve is for a different noise sigma. 

The figure also includes (blue and red curves) the 
data from the human observers. No attempt has 
been made at this point to find the best fitting 
value of noise σ, but it is clear that a value of 
around -2.25 yields a rough approximation to the 
human data for visible images, and -2 for infrared 
images. 

A  

B  
Figure 5. Simulated percent correct object 
identification as a function of blur scale for 
several different values of neural noise (Log σ 
= -2.5, -2.25, -2., -1.75). The blue and red 
curves are the human data. A) visible, B) in-
frared. 

Removing the Background 
As noted above, object identification per-

formance is better than expected from the guess-
ing model, which indicates that on average dif-
ferent aspects of one object are more similar (as 
images) than are aspects of another image. This 
could be due in part to the object background, 
which is nearly constant from aspect to aspect. 
To test this we have computed results for images 
with the background removed. Aperture images 
defining the object area were provided by the 
U.S. Army Night Vision and Electronic Sensors 
Directorate. The apertured image was constructed 
as image * aperture + 2048 * (1 - aperture). An 
example of the construction of one apertured im-
age is shown in Figure 6. 
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Figure 6. Construction of an apertured image. 
A) Original image, B) aperture, C) apertured 
image. 

The model results obtained using the aper-
tured images are shown in Figure 7. Overall, per-
formance is somewhat better than for the original 
images. The visible image performance for –Log 
σ = –2.25 is now closer to the data, while the in-
frared data lie between Log σ = -2.5 and -2.25. 

 

 
Figure 7. Object identification performance vs 
blur scale for apertured images. Details as in 
Figure 5. 

Visible vs Infrared 
One purpose of the original psychophysical 

experiment was to determine the relation between 
N50 for visible and infrared images of similar 
objects. If the N50s were the same, that would 
allow the same metric to be used regardless of 
the iamge type. However, in that experiment the 
estimated N50s differed by about 50% (7.5 visi-
ble, 11.5 infrared)[2]. 

Figure 8 compares model results for visible 
and infrared. A short summary is that perform-
ance is somewhat better for infrared than for 
visible, but that this advantage largely vanishes 
with apertured images. Recall that human per-
formance is slightly lower for infrared, so this 
consititutes a small discrepancy between model 
and data. 

 

 
Figure 8. Object identification performance vs 
blur scale for visible (black) and infrared (red) 
images. A) Original, B) apertured. Other de-
tails as in Figure 5. 

Summary 
A very simple identification model incorpo-

rating the Spatial Standard Observer can generate 
performance similar to human data for both visi-
ble and infrared imagery. Some discrepancies 
remain, notably the slightly steeper decline with 
blur, and the poorer performance with infrared 
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imagery, found in the human results. We hope to 
investigate these matters further in the second 
stage of this project. 

Future work on this part of the project will in-
clude alternative SSO-based models, as well as 
other human data sets[4]. We hope to understand 
better the reasons for infrared vs visible perform-
ance. We also want to work with aircraft rather 
than tank images. 

Visibility Calculator 
In a second part of this project, we have be-

gun development of a prototype application to 
predict visibility of aircraft targets as they might 
be seen from a UAV. Conversely, the tool could 
be used to predict visibility of the UAV from an-
other aircraft. A screen shot of the prototype ap-
plication is shown below. 

The tool allows the user to select an aircraft, 
as well as various viewing parameters. The tool 
then computes the visibility of the aircraft, ex-
pressed in units of JND. The tool is currently 
online and operational at the URL shown in the 
figure.  

The tool operates by computing a rendered 
image from a selected 3D model. The rendered 
image is then processed using the current version 
of the Spatial Standard Observer (SSO). The tool 
is implemented using webMathematica, an exten-
sion of the Mathematica language[5]. The current 
version of the prototype is only a proof of con-
cept, and must be augmented by realistic optical 
and atmospheric effects, and must be calibrated 
in both geometric and photometric aspects. We 
plan to accomplish these augmentations in the 
second phase of this project. 
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Figure 9. Screen shot of web-based visibility tool. 
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VIDEO PROCESSING METHODS FOR IN-FLIGHT GAZE ANALYSIS 
 

Jeffrey B. Mulligan 
NASA Ames Research Center 

 
In-flight gaze analysis is a tool for assessing the impact of new cockpit technologies on pilots' allocation 
of attentional resources.  In particular, gaze tracking measures allow us to determine whether external 
scanning is sufficient to insure the pilot's ability to see-and-avoid traffic under VFR conditions.  
Commercial gaze-tracking solutions, however, do not currently provide adequate performance in the 
presence of high levels of ambient illumination, as encountered in clear sunny weather.  This report 
describes novel methods developed for the analysis of data collected in a series of helicopter flight tests 
conducted in October, 2003. 
 
 

INTRODUCTION 
 

     Pilots flying under visual flight rules (VFR) 
are obligated to continuously monitor the 
surrounding airspace for other traffic, and 
maneuver as necessary to eliminate conflicts 
(“see-and-avoid”).  Thus the introduction of any 
new device into the cockpit raises the question of 
how the use of the device may impact the pilot's 
allocation of visual and attentional resources.  
Our project specifically focusses on the use of 
global positioning system (GPS) receivers as 
navigational aids.  We wish to determine both 
how access of the information provided by the 
display affects performance in a precision 
navigation task, and how it impacts other 
important functions such as see-and-avoid.  The 
use navigational aids of this sort is of particular 
importance for helicopter operations such as 
medical evacuation, in which the pilot has to fly 
an unfamiliar route, possibly in close proximity 
to obstacles and other traffic. 
 
     To this end, a series of flight tests were 
conducted in October, 2003, in which four video 
streams were recorded.  Two head-mounted 
cameras provided images of the pilot's eye,  and 
the forward-looking view from the pilot's 
perspective, while two additional fixed cameras 
provided a frontal view of the pilot's head and 
shoulders, and an over-the-shoulder view which 
included the control stick.  A complete 
description of the data collection procedures has 
been reported previously [1]. 
 
     Our initial approach to extraction of gaze 
estimates from the video data was to apply 
techniques commonly applied to similar images 
obtained in the laboratory under controlled 

illumination conditions [2].  Unfortunately, these 
techniques proved unsatisfactory for the 
conditions encountered during the flight tests.  
Straightforward search for key features such as 
the illuminator reflexes (“glints”) and the pupil 
boundary (inner iris margin) resulted in gaze 
estimates for approximately 70% of the frames in 
the night recordings, and less that 40% of the 
frames of the day recordings.  The primary factor 
contributing to the poor performance with the 
day recordings was the high level of ambient 
illumination (sunlight) which swamped the 
controlled illumination provided by the goggle-
mounted light-emitting diodes.  Additionally, the 
high light levels caused most of the subject pilots 
to maintain their eyelids in a relatively closed 
position, often hiding the features normally used 
for gaze estimation. 
 
     In order to obtain precise gaze estimates for 
all of the images, we therefore embarked upon a 
program to develop a set of new methods  
specifically tailored to address these problems.  
Our approach consisted of the following 
elements:  1)  development of interactive tools 
for hand-labelling of selected images;  2) 
development of a geometrical model of the eye, 
allowing accurate gaze estimation from a 
minimal set of features;  3) development of a 
clustering procedure for selecting minimal sets of 
exemplar images for hand labelling, which span 
the space of possible appearances;  4) 
development of interactive tools for registration 
and feature-labelling of images from the head 
mounted scene camera, necessary for 
transforming head-relative gaze estimates 
(obtained from the eye images) to an external 
world-referenced gaze target.  In the following 



sections, we describe each of these elements in 
more detail. 
 

 
Figure 1:  Typical eye image (from night flight) showing 
superimposed labels of eyelid and iris features. 
 

EYE AND LID LABELLING TOOL 
 
     The eye and lid labelling tool allows an 
operator to indicate the positions of the features 
of interest with a series of mouse clicks within a 
window displaying an enlarged image.  The set 
of possible features consists of:  1)  three fourth-
order curves describing the lower eyelid margin, 
the upper eyelid margin, and the skin fold above 
the upper eyelid;  2)  two ellipses desribing the 
inner and outer margins of the iris, referred to as 
the pupil and limbus, respectively;  3)  six point 
locations describing the positions of the 
reflections of the LED illuminators.  
Additionally, check-boxes are provided allowing 
the operator to indicate the presence or absence 
of each feature in each image to be labelled.  
Figure 1 shows a typical image in which all the 
features are visible, along with the corresponding 
labels. 
 

 
 
Figure 2:  Eye image with superimposed labelling 
showing pupil/limbus model. 
 
 

GEOMETRICAL EYE MODEL 
 
     The labelling procedure described in the 
previous section allows the pupil and limbus to 
be described by ellipses which are completely 
independent.  But because these features are part 
of a rigid mechanical system (the eye), they 
move together, and thus their projected shapes in 
the image are not free to vary independently, but 
are strongly constrained.  These constraints may 
be exploited to obtain accurate estimates of gaze 
even when only a small portion of the pupil is 
visible in the image (as in figure 2). 
 
    We have implemented a model introduced by 
Ohno [3], in which the effects on the pupil image 
by refraction at the cornea are approximated by a 
change in apparent depth and size.  The model 
has 3 structural parameters, which should be the 
same for all images obtained from a given 
subject:  the limbus radius, the distance of 
the plane of the iris from the eye's center of 
rotation, and the difference in apparent depth 
between the pupil and the limbus.  Two 
additional parameters are constant within a 
set of images obtained with a fixed position 
of the goggle:  these are the position in the 
image of the center of the pupil and limbus 
when the eye is pointed directly at the 
camera, and the pupil and limbus appear as 
concentric circles.  The corresponding 
viewing direction forms the origin of our 
gaze coordinate system. 
 
   Three additional parameters must be 
determined for each frame:  the gaze angles, 
expressed as slant and tilt relative to the eye-
camera axis, and the pupil radius (which 
varies slowly within limits).  As slant 
increases, the pupil and limbus change in 
appearance from circles to ellipses; the major 
axis of the ellipse having a length equal to 
twice the relevant radius, while the minor 
axis is diminished by a factor equal to the 
cosine of the slant.  If the pupil depth 



diffference parameter is zero, then the 
ellipses will be concentric; conversely, the 
depth difference parameter can be adusted to 
account for non-concentric appearance at 
large gaze angles. 
 
     Several passes through the data are 
required to determine the fixed parameters:  
first we must determine the center 
coordinates.  If the model is accurate, then all 
of the ellipse minor axes should interesect at 
the center point.  In practice, the ellipses 
produced by the initial labelling will not have 
coincident minor axes, so we obtain a least-
squares solution using the singular value 
decomposition on the matrix of line 
equations.   Once the correct center has been 
found, then the shape of the limbus in the 
frames with large gaze deviations determines 
the distance of the limbus plane from the 
center of rotation.  Finally, the offset of the 
pupil plane is readjusted in each frame.   In 
each case, after labelling the individual 
frames, the mean is computed across frames, 
and this value is held fixed during 
subsequent iterations.  Once the structural 
parameters have been determined, the 
variable parameters (gaze angles and pupil 
radius) can be set quickly and easily. 
 

IMAGE CLUSTERING 
 
   While the hand-labelling procedures 
described in the previous sections require 
only a minute or so per frame, when the 
number of frames is large it is impractical to 
hand label them all.  For example, the 
Tullahoma flight test data set consists of 15 
recordings of approximately 100,000 frames 
each.  Fortunately, many of the frames are 
roughly similar; because typical gaze 
behaviors consist of fixational eye 
movements, we often encounter runs of 10 or 
more similar frames corresponding to a 
fixation.  Furthermore, because gaze 
repetitively returns to certain targets such as 
the cockpit instruments, we find large sets of 
similar frames in the complete recordings.  

The purpose of the image clustering 
procedure is to form an efficient hierarchical 
representation of this strucure. 

 
Figure 3:  Two-dimensional cartoon illustrating 
selection of catalog exemplars and nearest neighbors.  
Numbered disks represent exemplar images, a new 
exemplar is added to the catalog when the distance of 
a new image from existing exemplars exceeds a 
threshold, indicated by the large circles. 
 
     The procedure we have adopted combines 
elements of vector quantization [4} and 
nearest-neighbor classifiers [5].  Here we 
present a brief overview of the procedure; a 
more thorough treatment is provided 
elsewhere [6].  We assume the existence of a 
metric which provides us with a measure of 
“distance” between two images.  (We use a 
metric based on correlation, but the 
following discussion does not depend upon 
the choice of metric.)  We treat the images as 
points in a high-dimensional space; the 
number of dimensions is potentially as large 
as the number of pixels, but for the restricted 
class of images that we are dealing with the 
images all lie within a manifold whose 
dimension is considerably lower.  In figure 3, 
we represent the images as points in a two-
dimensional plane for illustration purposes 
only. 
 
     We begin by choosing a threshold 
distance.  Our goal is to come up with a 
minimal set of exemplar images, chosen 
from the input sequence, such that each 
exemplar differs from every other exemplar 
by at least the threshold distance, but every 
other non-exemplar image is within the 
threshold distance of the nearest exemplar.  
The catalog of exemplars is formed as 
follows:  the first image in the sequence is 



the first catalog entry.  As we proceeed 
sequentially through the sequence, each 
image in the sequence is then tested against 
the exemplar associated with the previous 
frame.  If the distance is below the threshold, 
then we proceed to the next frame.  
Otherwise, we test the image against the 
remaining catalog entries, stopping when we 
find one whose distance from the input is less 
than the threshold.  If no catalog entry is 
found within the required distance of the 
input image, then the input image is added to 
the catalog. After the catalog has been 
generated, a second pass over the data is 
performed in which each image is associated 
with its nearest neighbor in the catalog.  This 
process is illustrated in figure 3.  Rather than 
process the entire sequence with a small 
threshold, we begin with a large threshold 
resulting in a small number of exemplars, 
and then apply the process recursively to the 
resulting neighborhoods, resulting in a tree in 
which the exemplars at each levels form the 
nodes.  As we descend the tree, the images in 
each neighborhood become more and more 
similar; at some point we expect that this 
similarity will be high enough that an 
automatic labelling procedure, initialized 
with the values of a hand-labelled exemplar, 
will be able to successfully label the 
remaining images. 
 
 

 
Figure 4:  Cockpit mosaic image created by merging 

and-aligned exemplar images. 
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SCENE LABELLING 

 
s of the eye images as described 

te
similarly, the head-mounted scene camera 
provides us with a head-relative view of the 
world; each pixel in the scene camera image 
corresponds to unique direction of head-relative 
gaze.   Thus, once we have registered the scene 
camera image to a model of the world, we can 
relate the gaze computed from the eye image to 
an external target specified in world-coordinates. 
 
      Initially, we make the assumption that
tr
compared to the distance to the objects being 
imaged,  so that we can ignore the effects of 
parallax, and model the appearance of the cockpit 
by mosaicking images from the scene camera on 
a sphere.  We have developed a tool allowing an 
operator to manually register an image to another 
image or the complete mosaic by manipulating 
sliders controlling the three rotation angles (pan, 
tilt, and roll).  This is accomplished by first 
computing the angles associated with each pixel 
in the scene camera image (which depends only 
on the focal length).  These angles are then 
transformed according to the operator-selected 
parameters.  An entire hemisphere of viewing 
directions is mapped into an image for viewing 
using stereographic projection (see figure 4). 
 
     While it is possible to obtain a reasona
lo
are often misaligned.  This can be for two 
reasons:  first, our assumption of zero parallax is 
clearly false; in addition, the focal length of the 
camera is initially uncalibrated.  Both of these 
issues are ones which we ultimately hope to deal 
with in the correct manner, but in order to do so 
we need to have the coordinates of individually-
labelled features.  Thus our labelling tool also 
incorporates a feature editor.  To add a new 
feature, the operator first clicks on its location in 
the mosaic image.  The tool then automatically 
generates the list of frames which should contain 
that feature, based on the angles used to register 
each frame to the mosaic.  These images are 
presented to the user in a second window, where 
(s)he indicates the precise location with another 
mouse click. 
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Visual Appearance Applied to Gaze 

have described a number of new too
d
recordings.  Currently, a few thousand images 
from the Tullahoma flight tests have been hand-
labelled, which allow us to directly estimate 
gaze, but with a low precision.  Because of the 
fact that the GPS reciever was mounted at the top 
of the instrument cluster in the test vehicle (i.e., 
at the boundary of the windscreen), we need a 
high degree of precision to discriminate fixations 
on the receiver from out-the-window scanning.  
Thus our next step will be to develop procedures 
to use the hand-labelled data to automatically 
label the remaining images. 
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